当前位置: 首页 > MySQL数据库

MySQL知识点之InnoDB中的行级锁是什么

时间:2026-01-27 10:40:03

行锁,也称为记录锁,顾名思义就是在记录上加的锁。但是要注意,这个记录指的是通过给索引上的索引项加锁。InnoDB 这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁。

不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。

只有执行计划真正使用了索引,才能使用行锁:即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL 通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。

同时当我们用范围条件而不是相等条件检索数据,并请求锁时,InnoDB会给符合条件的已有数据记录的索引项加锁。

不过即使是行锁,InnoDB里也是分成了各种类型的。换句话说即使对同一条记录加行锁,如果类型不同,起到的功效也是不同的。

这里我们还是使用前面的teacher表,增加一个索引,并插入几条记录。

mysql> desc teacher;+--------+--------------+------+-----+---------+-------+| Field  | Type         | Null | Key | Default | Extra |+--------+--------------+------+-----+---------+-------+| number | int(11)      | NO   | PRI | NULL    |       || name   | varchar(100) | YES  | MUL | NULL    |       || domain | varchar(100) | YES  |     | NULL    |       |+--------+--------------+------+-----+---------+-------+3 rows in set (0.00 sec)mysql> select * from teacher;+--------+------+--------+| number | name | domain |+--------+------+--------+|      1 | T    | Java   ||      3 | M    | Redis  ||      9 | X    | MQ     ||     15 | O    | Python ||     21 | A    | Golang |+--------+------+--------+5 rows in set (0.00 sec)

我们来看看都有哪些常用的行锁类型。

Record Locks

也叫记录锁,就是仅仅把一条记录锁上,官方的类型名称为:LOCK_REC_NOT_GAP。比方说我们把number值为9的那条记录加一个记录锁的示意图如下:

记录锁是有S锁和X锁之分的,当一个事务获取了一条记录的S型记录锁后,其他事务也可以继续获取该记录的S型记录锁,但不可以继续获取X型记录锁;当一个事务获取了一条记录的X型记录锁后,其他事务既不可以继续获取该记录的S型记录锁,也不可以继续获取X型记录锁。

T1T2
begin;
select * from teacher where number=9 for update;

select * from teacher where number=9 for update; # 阻塞
Gap Locks

MySQL在REPEATABLE READ隔离级别下是可以部分解决幻读问题的,解决方案有两种,可以使用MVCC方案解决,也可以采用加锁方案解决。但是在使用加锁方案解决时有问题,就是事务在第一次执行读取操作时,那些幻影记录尚不存在,我们无法给这些幻影记录加上记录锁。InnoDB提出了一种称之为Gap Locks的锁,官方的类型名称为:LOCK_GAP,我们也可以简称为gap锁。

间隙锁实质上是对索引前后的间隙上锁,不对索引本身上锁。

T1T2
begin;
update teacher set domain=‘Redis’ where name=‘M’;

insert into teacher value(23,‘B’,‘docker’); # 阻塞

insert into teacher value(23,‘B’,‘docker’); # 阻塞

事务T1会对([A, 21], [M, 3])、([M, 3], [O, 15])之间进行上gap锁,如下图中所示:

意味着不允许别的事务在这条记录前后间隙插入新记录,所以T2就不能插入。

但是当SQL语句变为:

insert into teacher value(70,'P','docker');

能插入吗?当然能,因为(70,‘P’)这条记录不在被锁的区间内。

思考题

现在有表,表中有记录如下:

list = ['su liang','hacker','ice']list.insert(1,'kiko')print(list)#结果:['su liang', 'kiko', 'hacker', 'ice']

开启一个事务:

begin;SELECT * FROM test1 WHERE number = 3 FOR UPDATE;

开启另外一个事务:

INSERT INTO test1 (id, number) VALUES (2, 1); # 阻塞INSERT INTO test1 (id, number) VALUES (3, 2); # 阻塞INSERT INTO test1 (id, number) VALUES (6, 8); # 阻塞INSERT INTO test1 (id, number) VALUES (8, 8); # 正常执行INSERT INTO test1 (id, number) VALUES (9, 9); # 正常执行INSERT INTO test1 (id, number) VALUES (10, 12); # 正常执行UPDATE test1 SET number = 5 WHERE id = 11 AND number = 12; # 阻塞

为什么(6,8)不能执行,(8,8)可以执行?这个间隙锁的范围应该是[1,8],最后一个语句为什么不能执行?
解决思路:画一个number的索引数据存放的图,然后根据间隙锁的加锁方式,把锁加上,就能很快明白答案。

    当插入的number在(1,8)区间都会被阻塞

    当插入的number等于1、8,那么id在(1,4]、[6,7)区间会被阻塞

Next-Key Locks

有时候我们既想锁住某条记录,又想阻止其他事务在该记录前边的间隙插入新记录,所以InnoDB就提出了一种称之为Next-Key Locks的锁,官方的类型名称为:LOCK_ORDINARY,我们也可以简称为next-key锁。next-key锁的本质就是
一个记录锁和一个gap锁的合体。

默认情况下,InnoDB以REPEATABLE READ隔离级别运行。在这种情况下,InnoDB使用Next-Key Locks锁进行搜索和索引扫描,这可以防止幻读的发生。

Insert Intention Locks

我们说一个事务在插入一条记录时需要判断一下插入位置是不是被别的事务加了所谓的gap锁(next-key锁也包含gap 锁,后边就不强调了),如果有的话,插入操作需要等待,直到拥有gap锁的那个事务提交。

但是InnoDB规定事务在等待的时候也需要在内存中生成一个锁结构,表明有事务想在某个间隙中插入新记录,但是现在处于等待状态。这种类型的锁命名为Insert Intention Locks,官方的类型名称为:LOCK_INSERT_INTENTION,我们也可以称为插入意向锁。

可以理解为插入意向锁是一种锁的的等待队列,让等锁的事务在内存中进行排队等待,当持有锁的事务完成后,处于等待状态的事务就可以获得锁继续事务了。

隐式锁

锁的的维护是需要成本的,为了节约资源,MySQL在设计提出了了一个隐式锁的概念。一般情况下INSERT操作是不加锁的,当然真的有并发冲突的情况下下,还是会导致问题的。

所以MySQL中,一个事务对新插入的记录可以不显式的加锁,但是别的事务在对这条记录加S锁或者X锁时,会去检查索引记录中的trx_id隐藏列,然后进行各种判断,会先帮助当前事务生成一个锁结构,然后自己再生成一个锁结构后进入等待状态。但是由于事务id的存在,相当于加了一个隐式锁。

这样的话,隐式锁就起到了延迟生成锁的用处。这个过程,我们无法干预,是由引擎自动处理的,对我们是完全透明的,我们知道下就行了。

锁的内存结构

所谓的锁其实是一个内存中的结构,在事务执行前本来是没有锁的,也就是说一开始是没有锁结构和记录进行关联的,当一个事务想对这条记录做改动时,首先会看看内存中有没有与这条记录关联的锁结构,当没有的时候就会在内存中生成一个锁结构与之关联。比方说事务T1要对记录做改动,就需要生成一个锁结构与之关联。

锁结构里至少要有两个比较重要的属性:

  • 英特尔与 Vertiv 合作开发液冷 AI 处理器
  • 英特尔第五代 Xeon CPU 来了:详细信息和行业反应
  • 由于云计算放缓引发扩张担忧,甲骨文股价暴跌
  • Web开发状况报告详细介绍可组合架构的优点
  • 如何使用 PowerShell 的 Get-Date Cmdlet 创建时间戳
  • 美光在数据中心需求增长后给出了强有力的预测
  • 2027服务器市场价值将接近1960亿美元
  • 生成式人工智能的下一步是什么?
  • 分享在外部存储上安装Ubuntu的5种方法技巧
  • 全球数据中心发展的关键考虑因素
  • 英特尔与 Vertiv 合作开发液冷 AI 处理器

    英特尔第五代 Xeon CPU 来了:详细信息和行业反应

    由于云计算放缓引发扩张担忧,甲骨文股价暴跌

    Web开发状况报告详细介绍可组合架构的优点

    如何使用 PowerShell 的 Get-Date Cmdlet 创建时间戳

    美光在数据中心需求增长后给出了强有力的预测

    2027服务器市场价值将接近1960亿美元

    生成式人工智能的下一步是什么?

    分享在外部存储上安装Ubuntu的5种方法技巧

    全球数据中心发展的关键考虑因素