12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
ADADADADAD
编程知识 时间:2024-12-04 13:08:36
作者:文/会员上传
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
在PyTorch中,可以使用torch.quantization模块来进行模型的量化。具体步骤如下:定义模型并加载预训练的模型参数。import torchimport torchvision.models as modelsmodel = mo
以下为本文的正文内容,内容仅供参考!本站为公益性网站,复制本文以及下载DOC文档全部免费。
在PyTorch中,可以使用torch.quantization模块来进行模型的量化。具体步骤如下:
import torchimport torchvision.models as modelsmodel = models.resnet18(pretrained=True)model.eval()
import torch.quantizationquantized_model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8)
from torch.utils.data import DataLoaderimport torchvision.datasets as datasetsimport torchvision.transforms as transformstransform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])dataset = datasets.ImageNet(root='path_to_ImageNet', split='val', transform=transform)loader = DataLoader(dataset, batch_size=1)def evaluate(model):model.eval()model = model.to('cuda')total_correct = 0total_samples = 0with torch.no_grad():for images, labels in loader:images = images.to('cuda')labels = labels.to('cuda')outputs = model(images)_, predicted = torch.max(outputs, 1)total_samples += labels.size(0)total_correct += (predicted == labels).sum().item()accuracy = total_correct / total_samplesprint(f'Accuracy: {accuracy}')evaluate(quantized_model)
通过以上步骤,你可以使用PyTorch的量化功能对模型进行量化,并评估量化后模型的性能。
11-20
11-19
11-20
11-20
11-20
11-19
11-20
11-20
11-19
11-20
11-19
11-19
11-19
11-19
11-19
11-19