12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
ADADADADAD
编程知识 时间:2024-12-04 13:09:05
作者:文/会员上传
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
在PyTorch中处理多任务学习通常有两种方法:使用多个输出层:在模型的最后添加多个输出层,每个输出层对应一个任务。然后在损失函数中对每个任务的损失进行加权求和,可以根据任务
以下为本文的正文内容,内容仅供参考!本站为公益性网站,复制本文以及下载DOC文档全部免费。
在PyTorch中处理多任务学习通常有两种方法:
class MultiTaskModel(nn.Module):def __init__(self):super(MultiTaskModel, self).__init__()self.shared_layers = nn.Sequential(nn.Linear(100, 50),nn.ReLU())self.task1_output = nn.Linear(50, 10)self.task2_output = nn.Linear(50, 5)def forward(self, x):x = self.shared_layers(x)output1 = self.task1_output(x)output2 = self.task2_output(x)return output1, output2model = MultiTaskModel()criterion = nn.CrossEntropyLoss()output1, output2 = model(input)loss = 0.5 * criterion(output1, target1) + 0.5 * criterion(output2, target2)
class SharedFeatureExtractor(nn.Module):def __init__(self):super(SharedFeatureExtractor, self).__init__()self.layers = nn.Sequential(nn.Linear(100, 50),nn.ReLU())def forward(self, x):return self.layers(x)class MultiTaskModel(nn.Module):def __init__(self):super(MultiTaskModel, self).__init__()self.shared_feature_extractor = SharedFeatureExtractor()self.task1_output = nn.Linear(50, 10)self.task2_output = nn.Linear(50, 5)def forward(self, x):x = self.shared_feature_extractor(x)output1 = self.task1_output(x)output2 = self.task2_output(x)return output1, output2model = MultiTaskModel()criterion = nn.CrossEntropyLoss()output1, output2 = model(input)loss = 0.5 * criterion(output1, target1) + 0.5 * criterion(output2, target2)
无论采用哪种方法,都需要根据任务的不同设置不同的损失函数,并且根据实际情况调整不同任务之间的权重。
11-20
11-19
11-20
11-20
11-20
11-19
11-20
11-20
11-19
11-20
11-19
11-19
11-19
11-19
11-19
11-19