12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
ADADADADAD
编程知识 时间:2024-12-05 09:51:08
作者:文/会员上传
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
Scrapy 可以通过使用多线程或多进程来提高爬取效率。以下是一些实现方式:多线程爬取:Scrapy 默认是单线程爬取,但可以通过使用 Python 的 threading 模块创建多个线程来并行爬
以下为本文的正文内容,内容仅供参考!本站为公益性网站,复制本文以及下载DOC文档全部免费。
Scrapy 可以通过使用多线程或多进程来提高爬取效率。以下是一些实现方式:
import threadingdef start_crawl(url):process = CrawlerProcess(get_project_settings())process.crawl(MySpider, start_urls=[url])process.start()urls = ['http://example.com/page1', 'http://example.com/page2', 'http://example.com/page3']threads = []for url in urls:thread = threading.Thread(target=start_crawl, args=(url,))thread.start()threads.append(thread)for thread in threads:thread.join()
import multiprocessingdef start_crawl(url):process = CrawlerProcess(get_project_settings())process.crawl(MySpider, start_urls=[url])process.start()urls = ['http://example.com/page1', 'http://example.com/page2', 'http://example.com/page3']processes = []for url in urls:process = multiprocessing.Process(target=start_crawl, args=(url,))process.start()processes.append(process)for process in processes:process.join()
需要注意的是,多线程和多进程爬取都会增加系统资源消耗,尤其是内存和 CPU 使用率。因此,需要根据实际情况选择合适的方式来提高爬取效率。
11-20
11-19
11-20
11-20
11-20
11-19
11-20
11-20
11-19
11-20
11-19
11-19
11-19
11-19
11-19
11-19