12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
ADADADADAD
编程知识 时间:2024-12-24 18:32:17
作者:文/会员上传
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
要将Java Kafka与Spark集成,您需要执行以下步骤:添加依赖项首先,确保在项目的pom.xml文件中添加Kafka和Spark的依赖项。对于Maven项目,将以下依赖项添加到pom.xml文件中:<depende
以下为本文的正文内容,内容仅供参考!本站为公益性网站,复制本文以及下载DOC文档全部免费。
要将Java Kafka与Spark集成,您需要执行以下步骤:
首先,确保在项目的pom.xml文件中添加Kafka和Spark的依赖项。对于Maven项目,将以下依赖项添加到pom.xml文件中:
<dependencies><!-- Kafka --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.8.0</version></dependency><!-- Spark --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.0</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>3.2.0</version></dependency></dependencies>
请注意,您可能需要根据项目需求更改版本号。
创建一个Kafka消费者和生产者,用于从Kafka主题中读取和写入数据。以下是一个简单的示例:
import org.apache.kafka.clients.consumer.ConsumerConfig;import org.apache.kafka.clients.consumer.ConsumerRecords;import org.apache.kafka.clients.consumer.KafkaConsumer;import org.apache.kafka.clients.producer.KafkaProducer;import org.apache.kafka.clients.producer.ProducerConfig;import org.apache.kafka.clients.producer.ProducerRecord;import java.time.Duration;import java.util.Collections;import java.util.Properties;public class KafkaExample {public static void main(String[] args) {// Kafka配置Properties props = new Properties();props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");props.put(ConsumerConfig.GROUP_ID_CONFIG, "test-group");props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");// 创建Kafka消费者KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);consumer.subscribe(Collections.singletonList("test-topic"));// 创建Kafka生产者props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");KafkaProducer<String, String> producer = new KafkaProducer<>(props);// 生产数据for (int i = 0; i < 10; i++) {producer.send(new ProducerRecord<>("test-topic", Integer.toString(i), Integer.toString(i * 2)));}producer.close();// 消费数据while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));records.forEach(record -> System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()));}}}
创建一个Spark Streaming应用程序,用于从Kafka主题中读取数据并将其处理为DStream。以下是一个简单的示例:
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.streaming.Duration;import org.apache.spark.streaming.api.java.JavaInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import scala.Tuple2;import java.util.Arrays;public class SparkStreamingKafkaExample {public static void main(String[] args) {// 创建Spark配置和上下文SparkConf conf = new SparkConf().setAppName("SparkStreamingKafkaExample").setMaster("local[*]");JavaSparkContext sc = new JavaSparkContext(conf);JavaStreamingContext ssc = new JavaStreamingContext(sc, Duration.ofSeconds(1));// 从Kafka主题中读取数据JavaInputDStream<String> kafkaStream = ssc.socketTextStream("localhost", 9999);// 将数据转换为DStreamJavaPairRDD<String, Integer> counts = kafkaStream.flatMap(s -> Arrays.asList(s.split(" ")).iterator()).mapToPair(word -> new Tuple2<>(word, 1)).reduceByKey((a, b) -> a + b);// 打印结果counts.print();// 启动Streaming上下文ssc.start();ssc.awaitTermination();}}
首先,启动Kafka服务器(如果您还没有启动):
bin/zookeeper-server-start.sh config/zookeeper.propertiesbin/kafka-server-start.sh config/server.properties
然后,分别启动Kafka消费者和生产者以及Spark Streaming应用程序。您应该看到Kafka消费者从Kafka主题中读取数据,并将数据发送到Spark Streaming应用程序进行处理。最后,您应该看到Spark Streaming应用程序输出处理后的结果。
11-20
11-19
11-20
11-20
11-20
11-19
11-20
11-20
11-19
11-20
11-19
11-19
11-19
11-19
11-19
11-19