12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
ADADADADAD
电脑知识 时间:2024-12-03 14:47:53
作者:文/会员上传
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
12-09
在Mahout中实现Apriori算法的步骤如下:导入必要的库和函数:import org.apache.mahout.fpm.pfpgrowth.fpgrowth2.FPGrowth;import org.apache.mahout.fpm.pfpgrowth.fpgrowth2.
以下为本文的正文内容,内容仅供参考!本站为公益性网站,复制本文以及下载DOC文档全部免费。
在Mahout中实现Apriori算法的步骤如下:
导入必要的库和函数:
import org.apache.mahout.fpm.pfpgrowth.fpgrowth2.FPGrowth;import org.apache.mahout.fpm.pfpgrowth.fpgrowth2.FPGrowthItemsets;import org.apache.mahout.fpm.pfpgrowth.fpgrowth2.FPGrowthJob;import org.apache.mahout.fpm.pfpgrowth.fpgrowth2.FPGrowthDriver;
创建一个FPGrowth对象并设置参数:
FPGrowth fpGrowth = new FPGrowth();fpGrowth.setMinSupport(0.5);fpGrowth.setNumGroups(50);
读取数据集并进行格式转换:
FPGrowthDriver.runFPGrowth(args, fpGrowth);
运行Apriori算法并获取频繁项集:
FPGrowthJob fpGrowthJob = new FPGrowthJob();FPGrowthItemsets itemsets = fpGrowthJob.findFrequentItemsets(data, fpGrowth, true, false);
输出频繁项集:
for (FPGrowthItem item : itemsets.all()) { System.out.println(item);}
通过以上步骤,就可以在Mahout中实现Apriori算法并获取频繁项集。需要注意的是,在实际应用中,还需要根据具体数据集和需求调整参数和设置。
11-20
11-19
11-20
11-20
11-20
11-19
11-20
11-20
11-19
11-20
11-19
11-19
11-19
11-19
11-19
11-19