• ADADADADAD

    MapReduce的基本内容是什么[ mysql数据库 ]

    mysql数据库 时间:2024-11-29 09:51:53

    作者:文/会员上传

    简介:

    1、WordCount程序1.1 WordCount源程序import java.io.IOException;import java.util.Iterator;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configura

    以下为本文的正文内容,内容仅供参考!本站为公益性网站,复制本文以及下载DOC文档全部免费。

    1、WordCount程序

    1.1 WordCount源程序

    import java.io.IOException;import java.util.Iterator;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;public class WordCount {public WordCount() {} public static void main(String[] args) throws Exception {Configuration conf = new Configuration();String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();if(otherArgs.length < 2) {System.err.println("Usage: wordcount <in> [<in>...] <out>");System.exit(2);}Job job = Job.getInstance(conf, "word count");job.setJarByClass(WordCount.class);job.setMapperClass(WordCount.TokenizerMapper.class);job.setCombinerClass(WordCount.IntSumReducer.class);job.setReducerClass(WordCount.IntSumReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class); for(int i = 0; i < otherArgs.length - 1; ++i) {FileInputFormat.addInputPath(job, new Path(otherArgs[i]));}FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));System.exit(job.waitForCompletion(true)?0:1);}public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {private static final IntWritable one = new IntWritable(1);private Text word = new Text();public TokenizerMapper() {}public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {StringTokenizer itr = new StringTokenizer(value.toString()); while(itr.hasMoreTokens()) {this.word.set(itr.nextToken());context.write(this.word, one);}}}public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable result = new IntWritable();public IntSumReducer() {}public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {int sum = 0;IntWritable val;for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {val = (IntWritable)i$.next();}this.result.set(sum);context.write(key, this.result);}}}

    1.2 运行程序,Run As->Java Applicatiion

    1.3 编译打包程序,产生Jar文件

    2 运行程序

    2.1 建立要统计词频的文本文件

    wordfile1.txt

    Spark Hadoop

    Big Data

    wordfile2.txt

    Spark Hadoop

    Big Cloud

    2.2 启动hdfs,新建input文件夹,上传词频文件

    cd /usr/local/hadoop/

    ./sbin/start-dfs.sh

    ./bin/hadoop fs -mkdir input

    ./bin/hadoop fs -put /home/hadoop/wordfile1.txt input

    ./bin/hadoop fs -put /home/hadoop/wordfile2.txt input

    2.3 查看已上传的词频文件:

    hadoop@dblab-VirtualBox:/usr/local/hadoop$ ./bin/hadoop fs -ls .
    Found 2 items
    drwxr-xr-x- hadoop supergroup 0 2019-02-11 15:40 input
    -rw-r--r--1 hadoop supergroup 5 2019-02-10 20:22 test.txt
    hadoop@dblab-VirtualBox:/usr/local/hadoop$ ./bin/hadoop fs -ls ./input
    Found 2 items
    -rw-r--r--1 hadoop supergroup 27 2019-02-11 15:40 input/wordfile1.txt
    -rw-r--r--1 hadoop supergroup 29 2019-02-11 15:40 input/wordfile2.txt

    2.4 运行WordCount

    ./bin/hadoop jar /home/hadoop/WordCount.jar input output

    屏幕上会输入大段信息

    然后可以查看运行结果:

    hadoop@dblab-VirtualBox:/usr/local/hadoop$ ./bin/hadoop fs -cat output/*
    Hadoop2
    Spark2

    MapReduce的基本内容是什么.docx

    将本文的Word文档下载到电脑

    推荐度:

    下载
    热门标签: mapreducecepre