• ADADADADAD

    mysql大表中count()的用法案例[ mysql数据库 ]

    mysql数据库 时间:2024-11-29 10:10:17

    作者:文/会员上传

    简介:

    一个单表中包含有6000w+的数据,然而你又不能拆分.需要分别统计表中有多少数据,A产品有多少,B产品有多少这几个数据.在为优化之前.表结构如下,为了隐藏内容我将相应字段做了

    以下为本文的正文内容,内容仅供参考!本站为公益性网站,复制本文以及下载DOC文档全部免费。

    一个单表中包含有6000w+的数据,然而你又不能拆分.需要分别统计表中有多少数据,A产品有多少,B产品有多少这几个数据.

    在为优化之前.表结构如下,为了隐藏内容我将相应字段做了模糊化处理.

    CREATE TABLE `xxxx` (`link` varchar(200) DEFAULT NULL,`test0` varchar(500) DEFAULT NULL,`test1` varchar(50) DEFAULT NULL,`test2` int(11) DEFAULT NULL,`test3` varchar(20) DEFAULT NULL,`test4` varchar(50) DEFAULT NULL,`test5` varchar(50) NOT NULL,`inserttime` datetime DEFAULT NULL,`test6` bit(1) NOT NULL DEFAULT b'0',`A` bit(1) NOT NULL DEFAULT b'0',`B` bit(1) NOT NULL DEFAULT b'0' ,PRIMARY KEY (`test5`),KEY `test6` (`test6`) USING BTREE,KEY `A` (`A`) USING BTREE) ENGINE=InnoDB DEFAULT CHARSET=utf8;

    这个一个常规的InnoDB的表格,所以它的count(*)比起MyISAM的效率慢很多,InnoDB所显示的row的行数不很准确,所以在这这里我需要统计一下.有这么几个策略.
    共计61500000数据

    count(*) 耗时 1539.499s

    count(1) 耗时 907.581s

    count(A) 对索引进行count.

    count(test6) 对主键进行count.

    无一例外,由于这个表没有优化好上面无论哪一种都需要几千秒的时间,这个是我们无法忍受的.

    下面我们开始着手分析处理这个问题.

    预期整个表的count(*)应该在200s以内为正常,100以内为良好,50以内为优秀.

    首先我将里面test6抽取了出来,单独形成了一个表.对其进行操作.
    共计61500000数据

    count(*) 耗时10.238s

    count(1) 耗时8.710s

    count(test6) 对主键进行count.耗时12.957s

    其中count(1)的效率最高,比最慢count(pk)速度提升了52.0%.

    将你能确定的字段改为最优值,例如:

    varchar更为char.虽然varchar可以自动分配存储空间的大小但是.varchar需要使用1到2个额外的字节来记录字符串的长度,增加它的update的操作时间,

    datetime改为timestamp后者在1978-2038年之间

    最后使用count(1)检验的时候最快耗时,168s.虽然有些慢但是可以接受.

    总结:

    重新设计你表中的字段,尽量优化它的长度.不要一味使用过多的varchar.

    使用count(1)而不是count(*)来检索.

    mysql大表中count()的用法案例.docx

    将本文的Word文档下载到电脑

    推荐度:

    下载
    热门标签: pythonmysql